Attenuation of brain hyperbaric oxygen toxicity by fasting is not related to ketosis

M. CHAVKO, J. C. BRAISTED, and A. L. HARABIN

Naval Medical Research Center, 8901 Wisconsin Avenue, Bethesda, Maryland 20889-5607

Chavko M, Braisted JC, Harabin AL. Attenuation of brain hyperbaric oxygen toxicity by fasting is not related to ketosis. Undersea Hyper Med 1999; 26(2):99–103.—The effect of 24 h of fasting and changes in blood glucose and β-hydroxybutyrate (BHB) level on latency to seizures in hyperbaric oxygen (HBO₂) was studied. Conscious, unrestrained rats implanted with cortical electroencephalogram electrodes were exposed to 0.5 MPa (gauge pressure) O₂ until seizures were observed. Fasting for 24 h significantly (P < 0.01) decreased blood glucose (from 8.6 ± 0.9 mmol/L fed to 6.9 ± 0.7 mmol/L in the fasted group), increased blood BHB (0.07 ± 0.02 mM to 0.38 ± 0.10 mM, respectively), and prolonged the latency to seizures compared with normally fed animals (21.0 ± 9.8 vs. 34.6 ± 17.7 min, P < 0.05). Injection of the ketone precursor 1,3-butanediol (BD) to the fed animals increased blood BHB level to 0.72 ± 0.32, however, seizure latency remained the same as in fed animals. Restoration of blood glucose in fasted animals to the same level as in the fed group did not reverse the protection achieved by fast; instead it increased the latency to seizures. The results indicate that the protection against HBO₂ seizures by fasting in short starvation is not related to the increase in circulating ketone bodies or decrease in blood glucose.

starvation, ketosis, convulsions, central nervous system oxygen toxicity, glucose, brain

Hyperbaric oxygen (HBO₂) is used in various diving-related situations, as well as in the treatment of carbon monoxide intoxication and in other medical situations (1,2). However, breathing oxygen at high partial pressures may result in the manifestation of central nervous system (CNS) toxicity, including seizures, within a time lag inversely proportional to the O₂ partial pressure. These complications impose major limitations on HBO₂ use in high pressure or for longer exposures, or both (3). The development of pharmacologic or physiologic interventions to decrease the risk of seizures and increase safety would therefore be beneficial, both therapeutically and operationally.

Acute fasting, which results in hypoglycemia and ketosis, provides protection from seizures in humans and animals (4–6). A ketogenic diet, which is high in fat and an alternative to starvation, is effective against some experimental seizures in animals (7–9) and is used to control intractable seizures in children (review in 10). Previous studies also show that moderate fasting increases survival time (11) and seizure latency (12) in HBO₂ exposure. Both fasting and the ketogenic diet induce an increase in plasma ketone bodies [primarily β-hydroxybutyrate (BHB) and acetocacete], and a decrease in blood glucose. Most likely, the ketosis is the variable responsible for seizure control (5). The mechanism of the protection remains unknown (10). Preferential utilization of ketones, rather than glucose for brain metabolic function, seems fundamental in the anticonvulsant effect of a ketogenic diet, and resumption of a normal diet rapidly reverses the benefit of a ketosis (8).

The objective of this study was to determine if protection from HBO₂ seizures by acute, short fasting is related to the ketosis or to the mild hypoglycemia resulting from this treatment, or to both. For this purpose, blood glucose and ketone levels were manipulated in the fed and fasted rats by injection of glucose or a ketone precursor, 1,3-butanediol (BD), and the latency to seizures was recorded.

METHODS

Animals and O₂ exposures: Rats (male, Sprague–Dawley, pathogen-free, 360–460 g) were anesthetized with ketamine (100 mg · kg⁻¹) and xylazine (5 mg · kg⁻¹), and four stainless steel electrodes were inserted through the skull bilaterally over the posterior and anterior cortex. A miniature connector was joined to the electrodes, which were secured to the skull with dental acrylic. The rats recovered for 6–7 days. Animal weight was monitored daily. On the morning of the exposure, unrestrained animals were placed in a hyperbaric chamber, and permitted to acclimate for several minutes. After acclimation, a baseline electroencephalogram (EEG) was recorded for 5 min (Grass Instrument, Quincey, MA). The chamber was then compressed to 0.5 MPa (gauge pressure) with O₂ at 0.1 MPa · min⁻¹. The chamber was flushed with 100% O₂ for 1.5 min to raise the O₂ level to >99%. During exposure,
inspired CO$_2$ was monitored and remained below 0.01%. The animal and the EEG were monitored throughout the exposures by a blinded observer unaware of the animal’s treatment. When the animal developed a seizure, the chamber was decompressed at 0.1 MPa 1min$^{-1}$.

Treatments: For series 1 (non-injected animals), the animals were divided into two groups. Group 1 ($n = 10$) received regular rat chow and tap water ad libitum; group 2 ($n = 10$) was fasted for 24 h with free access to water before exposure. For series 2 (drug- or saline-injected animals), the animals were divided into five groups. Group 1 (fed + saline, $n = 12$) received regular chow and tap water ad libitum; group 2 (fasted + saline, $n = 14$) animals were fasted for 24 h with free access to water; group 3 (fed + BD, $n = 10$) animals were fed and injected with BD (25 mM · kg$^{-1}$); group 4 (fasted + BD, $n = 6$) animals were fasted and injected with BD (25 mM · kg$^{-1}$); and group 5 (fasted + glucose, $n = 14$) animals were fasted for 24 h and injected with normotonic (277 mOsm) 5% glucose (5 mM · kg$^{-1}$) to restore plasma glucose to fed levels. All animals in this series received an intraperitoneal injection of saline, BD, or glucose 30 min before O$_2$ exposure.

Blood biochemical analysis: Blood samples were taken from the tail vein before and 30 min after the animals were given injections. Plasma was separated immediately and frozen for later analysis. The samples were deproteinized by addition of 1 M perchloric acid, and the supernatant was assayed for glucose (13) and BHB level (14).

Data are expressed as mean ± 1 SD and were analyzed using analysis of variance and the Newman-Keuls test.

RESULTS

The EEG seizure that terminated exposure typically lasted about 1 min. It consisted of high-amplitude, high-frequency spikes, followed by depressed EEG and then transformation to polyspikes and wave formation. The animals usually exhibited clonic–tonic movements of the head and upper body during the EEG seizure.

Animals in all fasted groups lost approximately 6% of their pre-fasting body weight, whereas controls maintained or slightly increased body weight during the 24-h period preceding the O$_2$ exposure (Table 1).

In series 1 (non-injected animals), a 24-h fast significantly ($P = 0.01$) increased latency to seizures from 16.6 ± 5.7 to 26.9 ± 11.4 min. In series 2, fasting resulted in about the same increase in latency to seizure as observed in series 1 (Fig. 1). One saline-injected animal had an unusually long latency of 82 min and was not included in the statistics. This latency is about eight standard deviations from the mean latency of saline-injected animals (21.0 ± 9.8 min) and was determined to be an outlier. Inclusion of this animal caused an increase in group variability sufficient to abolish the significance in seizure latency in group 2.

Injection of BD to the fed animals had no effect on seizure latency compared with saline-injected animals (Fig. 1). BD injected to the fasted animals eliminated the protection of fasting. On the other hand, controlled glucose administration to the fasted animals further increased the latent time to seizure (Fig. 1).

Biochemical variables: During the 24-h fasting period, reciprocal changes in blood glucose and BHB concentrations were found (Table 1). The blood glucose concentration fell and differed significantly ($P < 0.01$) from the fed control, whereas the blood BHB concentration rose and also differed significantly ($P < 0.01$) from the control levels. A significant increase ($P < 0.01$) in plasma BHB levels resulted from BD injection (Table 1). Animals that were fasted and injected with glucose had their glucose restored to levels indistinguishable from the fed group, and significantly increased vs. the fasted group while their BHB concentration was not changed from the fasted group (Table 1).

DISCUSSION

This study shows that a short-term, 24-h fast significantly increases latency to HBO$_2$-induced seizures. This is in accord with the anticonvulsant effect of fasting in human epilepsy (4) and in experimental seizures induced by sound (6) or electroshock (5). Recently, Bitterman et al. (12) reported a significant delay in seizure latency during exposure to 5 atm after a 36-h fast, and a slight but non-significant increase after 24 h of starvation.

It is presumed that the anticonvulsant effect of both a ketogenic diet and fasting is related to the ketosis, and a shift in brain metabolism to the use of ketones instead of glucose. Experimental data, however, do not fully support a direct relationship between ketone level and anticonvulsant effect, and the precise mechanism by which ketosis protects against seizures remains to be identified (10).

Our data show that 24 h of fasting significantly increased blood BHB and decreased glucose. It should be considered, therefore, whether the ketosis or the decreased plasma glucose level is responsible for the delay in seizure latency demonstrated in fasted animals. If ketosis were the basis for the effect of fasting, infusion of ketones would provide protection to normally fed animals. For induction of ketosis, we have used i.p. injection of BD, a synthetic ethanol dimer, which is metabolized in the liver to BHB and acetoacetate (15). It has been shown that BD induces cerebral protection in models of hypoxia and ischemia (16,17), probably by elevating blood ketones, which can be used as an alternate substrate instead of glucose for brain
FASTING AND BLOOD KETONES IN HYPERBARIC OXYGEN SEIZURES

Table 1: Changes in Body Weight, Blood Glucose, and BHB Levels in Saline and Drug-Treated Animals

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Δ Body Weight, g</th>
<th>Glucose, mM</th>
<th>BHB, mM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before Injection</td>
<td>After Injection</td>
<td>Before Injection</td>
</tr>
<tr>
<td>Fed + saline</td>
<td>1.0 ± 0.7</td>
<td>7.73 ± 0.85</td>
<td>8.63 ± 0.93</td>
</tr>
<tr>
<td>Fast + saline</td>
<td>-25.0 ± 4.4 (^b)</td>
<td>5.07 ± 0.82 (^c)</td>
<td>6.91 ± 0.71 (^f)</td>
</tr>
<tr>
<td>Fed + BD</td>
<td>3.0 ± 2.5</td>
<td>ND</td>
<td>8.50 ± 1.31 (^d)</td>
</tr>
<tr>
<td>Fast + BD</td>
<td>-27.0 ± 5.3 (^b)</td>
<td>6.28 ± 0.75 (^e)</td>
<td>7.41 ± 0.75</td>
</tr>
<tr>
<td>Fast + glucose</td>
<td>-27.0 ± 5.3 (^b)</td>
<td>5.94 ± 0.81 (^c)</td>
<td>8.27 ± 1.23 (^d)</td>
</tr>
</tbody>
</table>

\(^{a}\)Values are mean ± SD, ND = not determined. \(^{b}\)P < 0.01 vs. fed + saline and fed + BD groups; \(^{c}\)P < 0.01 vs. fed + saline group; \(^{d}\)P < 0.01 vs. fast + saline group (Newman-Keuls test).

Ketosis does not seem to affect the relation between glucose phosphorylation and O$_2$ consumption in awake, resting rats; however it is not known if this relationship is maintained when glucose utilization is stimulated. Torbati et al. (20) have demonstrated that glucose utilization increases during exposure to 5 atm O$_2$ long before seizures. It can therefore be supposed that ketones might contribute more significantly to the higher energy demands when metabolism is stimulated. In that case, glucose supplementation should reverse the protective effect of increased ketones. Therefore, in one group of animals we administered glucose to fasted animals to reach exactly the same levels as in the fed animals. This manipulation did not reverse the effect of starvation, instead seizure latency was even longer than seen after a 24-h fast. This finding seems to correlate with the observation that the injection of glucose in normally fed rats induced protection against HBO$_2$ seizures, whereas insulin aggravated HBO$_2$ brain toxicity (21). The absence of an effect of BD animals on seizure latency in both saline-injected and fasted does not support the idea that starvation protects against HBO$_2$ seizures via a metabolic shift in the brain to utilize ketones instead of glucose.

Protection against free radical damage in lipid and proteins might explain how the fast increases tolerance to HBO$_2$. One study demonstrated that an overnight food restriction was sufficient to decrease ethane production (an index of lipid peroxidation) during exposure to 100% O$_2$, although there was no effect during air exposure (22).

It has been demonstrated that food deprivation affects expression of many genes, which can also be related to the delay in seizure latency in HBO$_2$ exposure. For instance, a 48-h fast significantly reduced nitric oxide synthase (NOS) transcription in the rat hypothalamus (23). Whether this regionally specific decrease in NOS is related to the protection against O$_2$ seizures is not known. However, systemic administration of NOS inhibitors that depress NOS activity in the whole brain, significantly increased
latency to seizures in rats (24,25). Nitric oxide may influence seizure latency in HBO₂ exposures in several ways: by oxidative damage, through formation of peroxynitrite and hydroxyl radicals (26), or by its potent vaso- dilatory effect (25). It would be interesting to know how changes in NOS activity in specific brain regions will affect sensitivity to HBO₂. A further possibility is that the protection against HBO₂ toxicity is secondary to the fasting-induced changes in the hypothalamo-pituitary adrenal axis (27). It has been reported that exposure of normal rats to HBO₂ results in an activation of the sympathetic adreno- medullary system indicated by a progressively elevated blood adrenaline, noradrenaline (28), and glucose concentration (29). This activation seems to attenuate HBO₂ brain toxicity, as adrenalectomy (30) and beta adrenergic block- ers (31) delay time to seizures. Food deprivation might protect by the same mechanism as it suppresses stress-induced rise in catecholamines (32).

Our results confirm a recent report that mild starvation protects against seizures induced by HBO₂ exposures. Apparently, this effect cannot be explained by ketosis or decreased blood glucose levels, which are changed in opposite ways during the fast. Other factors, such as a decrease in oxidative damage by fasting, may provide an alternative for this protection. Whatever the mechanism of protection against HBO₂ seizures by food deprivation, it might be useful in increasing protection against CNS O₂ toxicity in common situations such as diving or HBO₂ therapy.

This work was supported by NMRDC Work Unit Nos. 61152N MR00001.001-1501 and 637366N M00096.001-1705. The opinions and assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Navy Department or the naval service at large. This work was done by U.S. Government employees as part of their official duties; therefore, it cannot be copyrighted and may be copied without restriction. The experiments reported herein were conducted according to the principles set forth in the Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, National Academy Press, 1996.

The authors thank Ms. T. Cope and Ms. N. J. Outsia for technical assistance and Ms. S. Mannix and Ms. D. Temple for editorial assistance. Dr. Chavko is a visiting scientist from the Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.

Present address for Dr. Harabin: National Institutes of Health, Center for Scientific Review, Bethesda, MD 20892.—Manuscript received September 1998; accepted March 1999.

REFERENCES
26. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87:1620–1624.