THE RELATIONSHIP OF GALVANIC SKIN RESPONSE TO THE EMOTION-EVOKING PROPERTIES OF WORDS

by

A. David Mangelsdorff, Ensign, MC, USNR

and

Philip D. Shenfelt, Ensign, MC, USNR

Bureau of Medicine and Surgery, Navy Department
Research Work Unit MF12.524.002-9004.01

 Released by:
Gerald J. Duffner, CAPT MC USN
COMMANDING OFFICER
Naval Submarine Medical Center
12 March 1969

This document has been approved for public release and sale; its distribution is unlimited.
THE RELATIONSHIP OF GALVANIC SKIN RESPONSE TO THE EMOTION-EVOKING PROPERTIES OF WORDS

by
A. David Mangelsdorff, Ensign, MC, USNR
and
Philip D. Shenfelt, Ensign, MC, USNR

SUBMARINE MEDICAL RESEARCH LABORATORY
NAVAL SUBMARINE MEDICAL CENTER REPORT NO. 571

Bureau of Medicine and Surgery, Navy Department
Research Work Unit MF12.524.002-9004.01

Transmitted by:
B. B. Weybrew, Ph.D.
Head, Personnel Research Branch

Reviewed and Approved by:
Charles F. Gell, M.D., D.Sc.(Med)
Scientific Director
SubMedResLab

Joseph D. Bloom, CDR MC USN
Director
SubMedResLab

Approved and Released by:
Gerald J. Duffner, CAPT MC USN
COMMANDING OFFICER
Submarine Medical Center
SUMMARY PAGE

THE PROBLEM

To investigate the efficiency of the galvanic skin response (GSR) as a measure of cognitive response to a series of submarine-relevant words as a technique for assessing differences in the emotionality of submariners.

FINDINGS

GSR reactivity to highly emotionally-toned (non-submarine) words was greater than for neutral words, though the difference did not meet the 5% confidence level. However, significant differences (5%) in GSR reactivity were found between words rated highly-emotional as compared to those rated less emotionally-evoking.

APPLICATION

Individual differences in GSR-reactivity to cognitive stimuli appear to be related in a complex manner to general emotionality and may be useful as a predictive index of ability to tolerate the stresses of long submergence.

ADMINISTRATIVE INFORMATION

This investigation was conducted as a part of Bureau of Medicine and Surgery Research Work Unit MF12.524.002-9004—Selection and Retention of Submarine and Diving Personnel. The present report is Report No. 1 on this Work Unit. It was approved for publication on 12 March 1969 and designated as SubMedResLab Report No. 571. Related reports under Work Unit MF022.01.02-9004 were published as SubMedResLab Reports No. 511, 532, and Memorandum Report 68-15.

This document has been approved for public release and sale; its distribution is unlimited.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL CENTER
ABSTRACT

The two brief studies were designed to investigate the relationship between the autonomic nervous system component of emotions evoked in a laboratory situation by briefly exposed words of varying degrees of emotional-evoking “power.” Moreover, in the event that reliable relationships were found between these two classes of variables, it was further hypothesized that a practical approach to evaluation of individual differences in motivation might be disclosed.

The results of two pilot studies showed a tendency for GSR-reactivity to words with a high emotional-evoking property (as indicated by Q-sort of words) to be greater than for neutral words. However, this difference did not meet the confidence criterion set for this study at the 5% level.

Using 40 words, 10 neutral and 30 “submarine-relevant” in varying degrees as adjudged by Q-sorts performed by 6 Laboratory staff members, it was demonstrated that the mean GSR-reactivity for 16 enlisted subjects to the most emotional words determined by Q-sort was significantly greater as compared to the same statistics computed for the least emotional-evoking words (5% confidence level, t-test). However, the smallness of the subject sample, together with the relatively “weak” relationship of GSR reactivity to word content indicate the relative tenuousness of the findings from these pilot studies as a whole.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>METHODS AND PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>Pilot Studies</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>2</td>
</tr>
<tr>
<td>Scoring Technique for GSR’s</td>
<td>2</td>
</tr>
<tr>
<td>Submarine-Relevant Words Study</td>
<td>3</td>
</tr>
<tr>
<td>Method and Procedure</td>
<td>3</td>
</tr>
<tr>
<td>Emotional Content of Words</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>Pilot Studies</td>
<td>3</td>
</tr>
<tr>
<td>Submarine-Relevant Words Study</td>
<td>3</td>
</tr>
<tr>
<td>SUMMARY AND DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>5</td>
</tr>
</tbody>
</table>
THE RELATIONSHIP OF GALVANIC SKIN RESPONSE TO THE EMOTION-EVOKING PROPERTIES OF WORDS

INTRODUCTION

The interaction between psychological and physiological factors has long been recognized. In general, there have been two types of relationships described in the literature: (1) non-specific relationships in which stimuli evoke physiological responses and, (2) the association of specific psychological factors with specific physiological and biochemical changes. Skin resistance has been used as an accurate indicator of reactivity beginning with the work of Fere in the late Nineteenth Century. Rapid changes in skin resistance called Galvanic Skin Response (GSR) occur in response to external and internal stimuli.

The physiological basis for changes in galvanic skin response seems to rest in changes in the electrical properties of sweat glands and surrounding tissue when the sweat glands are stimulated to secrete, although the accompanying constriction of peripheral arterioles with the resulting decrease in blood flow may also be involved (McCleary, 1950). In either case, measurement of GSR provides an indirect indicator of the overall reactivity of the sympathetic nervous system (SNS).

The measurement of sweat gland activity as an indicant of SNS reactivity was used in these studies instead of heart rate or other SNS indices for several reasons: the sweat glands show no appreciable autonomous rhythmic activity, are not doubly innervated, i.e., by both SNS and parasympathetic nerves and are not subject to hormonal control (Wang, 1964).

Sweating does not occur equally on all parts of the body. Two fundamentally different stimuli trigger sweating (Kuno, 1956), namely, thermal and emotional stimuli. "Thermal" sweating results from ambient heat and occurs over the entire body, except for the palm and sole. There is a marked time lag after exposure to the stimulus (heat) before sweating begins. "Psychological," or emotional sweating, on the other hand, occurs mainly on the palm and sole, but the forehead and axilla may also become involved if the stress is of sufficient intensity. For the purpose of the present study, emotional sweating was wholly inferred from palmar conductance indices obtained from subjects in an air-conditioned laboratory in which thermal sweating was minimized.

In 1949, McCleary and Lazarus published data arguing that autonomic nervous system (ANS) "discrimination" without awareness did occur. Their experimental procedure involved the presentation of stimulus material at exposure speeds too short to permit conscious discrimination, yet there was evidence of autonomic discrimination as inferred from the GSR's of the subjects. Too, McGinnies (1949) conducted studies involving recognition thresholds and perceptual defense mechanisms. One major finding from this study was that the so-called taboo words elicited greater GSR's as compared to neutral words suggesting a relationship between cognitive responses and skin resistance changes.

This research is presented in two parts: (1) a pilot study involving, for the most part, the word list of McGinnies (op. cit.) with certain modifications, and (2) a second study using a list of submarine-relevant words and terms which had been ranked as to their emotional-evoking properties by six staff psychologists of the Submarine Medical Center, Groton, Connecticut. The major hypothesis underlying the second and more important study was that individual differences in GSR-reactivity to affectively-loaded submarine words, since it is for the most part involuntary in nature, may be systematically related to the general emotionality of the submariner and ultimately, of course, to the quality of his adjustment to the submarine environment. Prior to the implementation of the validation studies with respect to underway submariner adjustment however,
it was first necessary to demonstrate that these differences in GSR responsivity (within the submariner population) were usefully large and predictable. This, in short, was the final objective of this pilot research.

METHODS AND PROCEDURES

Pilot Studies

Two preliminary studies, which will hereafter be referred to as Pilot Study with Memory Drum and Pilot Study with Projector, were conducted for the purpose of familiarization with the equipment and the techniques.

Subjects. The Pilot Study with Drum was conducted with 19 enlisted volunteers for the Submarine Service awaiting admission to the Submarine School, Groton, Connecticut. Similarly, for the second study, 16 enlisted submariner candidates were used.

The Pilot Study employed a memory drum to present a series of 40 words. For the most part, the words were those used by McGinnies (1949) in the experiment focused upon certain aspects of the perceptual defense question. Because of inadequacies with the rotating drum, a Kodak 35mm slide projector was used for the second part of the preliminary study. For the Pilot Study with projector, the same word list previously employed was used. The words were projected in random order at 15-second intervals with an exposure time of two seconds. The words used were as follows:

Baseline:
- berry
- shoes
- table
- grass
- chair
- light
- white
- pause

Experimental Words:
- *enemy
- *shock
- apple
- fresh
- *death
- *beers
- *sperm
- *bitch

1. Words with an asterisk affixed were rated as emotionally-toned.

Instrumentation. All of the instrumentation was located in the recording room adjoining the measurement laboratory visible by means of a one-way screen. The projector was controlled from the polygraph recording room.

An Offner Type R Dynograph and a Fels Dermohmter were used for recording basal skin resistance level, and GSR*. A polygraph event marker served to record the onset of stimuli and other events throughout the experiment. Each subject was measured individually while seated comfortably in a chair in the air-conditioned room. The experimenter read the instructions aloud to the subject, after which silver chloride electrodes were placed on the subject's left palm, forearm and chest. Fifteen minutes were usually sufficient enough for the skin to hydrate. During this time a basal skin resistance level was established.

Scoring Technique for GSR’s. A basal skin resistance level was established for each subject using the resting period before, and after the test, and during the first 10 baseline words. A baseline skin resistance score was determined from the mean GSR’s to the 10 baseline words. From this baseline, it was possible to calculate the percentage decrease in resistance of each response to a given word stimulus. No consistent habituation effect in GSR magnitude was noticed from one to another word stimuli though there appeared to be a slight increase in resistance level of which the GSR’s occurred as the series of word-stimuli progressed.

A rating system was devised whereby each subject could be assigned a score or index indicating individual differences in GSR-reactivity to each word stimuli. For a subject, a rank of 3 was assigned to the maximum response to any test word. A 2 was assigned to a response less than the maximum but greater than one-half the maximum response. A response greater than zero but less than or equal to one-half the maximum response.

*Heart and breathing rates were also recorded but were not considered to be a significant aspect of the present study. Therefore, these data are not included in this report.
was given a rank of 1. No response to the stimulus was given a rank of zero. These rankings were recorded on the data sheet for each subject for each work stimulus. In computing the overall reactivity of all the subjects to the word stimulus, a score called “sum” was determined as the sum of the products of the rankings. For example, the word “enemy” had 12 zero rankings, 3 one rankings, 4 two rankings, and 0 three rankings. Its “sum” would be: \(12 \times 0 + 3 \times 1 + 4 \times 2 + 0 \times 3 = 11\). This “sum” provided an index of the magnitude of the responses to each word stimulus and as such, was used to rank order the GSR reactivity of the array of words, rank 1 being assigned to the highest sum-score.

Submarine-Relevant Words Study

Having completed the pilot studies, another list of 30 experimental words and 10 baseline or neutral words was prepared. The subjects were 35 enlisted men awaiting admission to Basic Enlisted Submarine School at Groton.

Method and Procedure. The list of 30 experimental and 10 baseline words was made into 35mm slides, which were again presented at 15-second intervals with an exposure time of two seconds. The test consisted of the 10 baseline words followed by the random presentation of the 30 experimental words. The entire test procedure took about ten minutes.

The same procedure used in the Pilot Study with Projector was employed in recording physiological responses for each subject. A basal skin resistance level was established for each subject using the resting period before and after the test and during the first 10 baseline words. The percentage decrease in resistance of each response to a word stimulus was determined. The same rating system was employed in determining a subject’s response to a word.

Emotional Content of Words. The emotional content of the experimental words was assigned by a group of five psychologists and one psychiatrist (all members of the Submarine Medical Center staff) by means of a Q-sort (Weybrew, 1953) of the 40 words used in the experiment. The experts’ evaluations were equated by assigning values of 2 for high emotionally-toned words, and a 0 for neutral words. These ratings were then summed and rank ordered, the highest possible sum for a given word being 12, resulting from 6 judges assigning a rank of 2 to the word in question.

The list of the words employed was as follows:

<table>
<thead>
<tr>
<th>Baseline:</th>
<th>Experimental Words:</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>water</td>
</tr>
<tr>
<td>think</td>
<td>tense</td>
</tr>
<tr>
<td>berry</td>
<td>qualify</td>
</tr>
<tr>
<td>shoes</td>
<td>torpedo</td>
</tr>
<tr>
<td>table</td>
<td>secure</td>
</tr>
<tr>
<td>glass</td>
<td>friend</td>
</tr>
<tr>
<td>chair</td>
<td>liberty</td>
</tr>
<tr>
<td>clear</td>
<td>failure</td>
</tr>
<tr>
<td>whole</td>
<td>pause</td>
</tr>
<tr>
<td>pause</td>
<td>death</td>
</tr>
<tr>
<td>tense</td>
<td>drowned</td>
</tr>
<tr>
<td>depth</td>
<td>escape</td>
</tr>
<tr>
<td>nervous</td>
<td>empty</td>
</tr>
<tr>
<td>worry</td>
<td>escape</td>
</tr>
<tr>
<td>angry</td>
<td>school</td>
</tr>
<tr>
<td>boats</td>
<td>skipper</td>
</tr>
<tr>
<td>crowded</td>
<td>boredom</td>
</tr>
<tr>
<td>silent</td>
<td>panic</td>
</tr>
<tr>
<td>trapped</td>
<td>afraid</td>
</tr>
</tbody>
</table>

RESULTS

Pilot Studies

The subjects in both pilot studies reacted more to the emotionally toned words than to the neutral words, although the differences failed to reach the 5% confidence level (Wilcoxon Test). However, some “neutral” words evoked significant GSR’s, for example, the word “apple.” One might hazard a guess that some subjects were reacting to the academic jargon “apple” meaning to clutch or fail on an examination. Too, the baseline word “grass” which was included in McGinnies’ studies as a neutral word similarly evoked GSR’s in some, possibly the result of the modern jargonized usage of “grass” to refer to marijuana. One realization resulting from the pilot studies was that modern connotations had to be considered in making up the list of emotionally-toned and neutral words.

Submarine-Relevant Words Study

Each of the words were rank ordered according to the sum of the ratings of the 6 “expert” judges. Three words, “death,” “panic,” and “trapped,” received the maxi-
mum emotionality ratings, namely a sum-
med-score—"12." Only slightly less emotion-
ally-toned words as judged by the experts
were the words "drown," "tense," "horny," "nervous," and "explode."

A Spearman-Rho Coefficient was calculated
for the array of 30 words between the expert
ratings and the calculated GSR reactivity
score to give \(Rho = 0.18 \) not significantly
greater than zero at the 5% level.

On the notion that the GSR-reactivity and
"expert" judgments of the array of 30 words
was curvilinear, the sample was fractionated
and Rho coefficients recalculated. Accord-
ingly, for the 9 words assigned the highest emo-
tionality ratings by the experts, the Rho co-
efficient was found to be — 0.43 and for the
lowest 17 words 0.13, neither reaching the
confidence criterion of 5%.

The interrelationships of the tests making
up the Submariner Selection battery with the
distributions of GSR-reactivity scores was
also examined. Spearman-Rho Coefficients
were computed for the two distributions
(\(N = 16 \)) with the following results:

Coefficient between GSR reactivity and a
Verbal Aptitude Test (NGCT) was 0.324,

Coefficient between GSR reactivity and an
Arithmetical Aptitude Test (ARI) — 0.140,

Coefficient between GSR reactivity and a
Mechanical Aptitude Test (MECH) 0.187,
and,

Coefficient between a Psychiatric Screen-
ning Questionnaire (PIB, Weybrew & Youniss,
1957) — 0.281. While none of these coeffici-
ents met the 5% confidence criterion, the
non-linearity of the regression line between
PIB and the GSR Reactivity scores is indi-
cated by the Rho coefficient of — 0.71 (\(p =
< .05 \)) computed for the 9 subjects having
the highest GSR reactivity scores. This find-
ing suggests the possibility that men in this
age group with the fewest manifest neurotic
symptoms show greater autonomic respon-
sivity to cognitive stimuli, at least as indi-
cated by GSR reactivity.

SUMMARY AND DISCUSSION

The two brief studies were designed to in-
vestigate the relationship between the auto-
nomic nervous system component of emotions
evoked in a laboratory situation by briefly
exposed words of varying degrees of emo-
tional-evoking "power." Moreover, in the
event that reliable relationships were found
between these two classes of variables it was
further hypothesized that a practical ap-
proach to evaluation of individual differences
in motivation might be disclosed.

The result of two pilot studies showed a
tendency for GSR-reactivity to words with a
high emotional-evoking property (as indi-
cated by Q-sort of words) to be greater than
for neutral words. However, this difference
did not meet the confidence criterion set for
this study at the 5% level.

Using 40 words, 10 neutral and 30 "sub-
marine-relevant" in varying degrees as ad-
judged by Q-sorts performed by 6 Labora-
tory staff members, it was demonstrated that
the mean GSR-reactivity for 16 enlisted sub-
jects to the most emotional words deter-
mined by Q-sort was significantly greater as
compared to the same statistics computed
for the least emotional-evoking words (5%
confidence level, t-test). However, the small-
ness of the subject sample, together with the
relatively "weak" relationship of GSR re-
activity to word content indicate the relative
tenuousness of the findings from these pilot
studies as a whole.

Future studies along similar lines might
explore the feasibility evoking individual dif-
fferences in autonomic reactivity by use of
more intensely emotional words, or by use of
pictures, or both. Another limitation of the
study may have centered around the use of
the Q-sort technique as a means of estimat-
ing the differential emotional-evoking prop-
erties of the various word lists used in the
studies. One possibility might be to get
weightings for the stimuli by use of some
techniques like the Semantic Differential
(Osgood, 19). One final limitation of the
study might have been related to the tech-
niques used in recording GSR and/or the
method of scoring the records after they
were obtained. Previous work at the Laboratory along these lines (Weybrew & Alves, 1959) suggested the possibility that a more useful GSR-reactivity score might be differences in rate of recovery-to-basal level following the initial GSR to the stimulus rather than the amplitude of response itself.

In short, the results of this study, while somewhat tenuous, nevertheless suggest at least the plausibility of using measures of autonomic responsivity evoked by cognitive stimuli as useful valid indices of general emotionality within the population about which selection decisions are to be made.

ACKNOWLEDGEMENTS

Sincerest appreciation for all the help from all the members of the Personnel Research Branch of the Submarine Medical Research Center. Particular thanks to Mr. James Parker and Dr. Benjamin Weybrew for their advice and support in planning and implementing the studies.

BIBLIOGRAPHY

The relationship of galvanic skin response to the emotion-evoking properties of words

The results of two pilot studies showed a tendency for GSR-reactivity to words with a high emotional-evoking property (as indicated by Q-sort of words) to be greater than for neutral words. However, this difference did not meet the confidence criterion set for this study at the 5% level.

Using 40 words, 10 neutral and 30 "submarine relevant," in varying degrees as adjudged by Q-sorts performed by 6 Laboratory staff members, it was demonstrated that the mean GSR-reactivity for 16 enlisted subjects to the most emotional words determined by Q-sort was significantly greater as compared to the same statistics computed for the least emotional-evoking words (5% confidence level, t-test). However, the smallness of the subject sample, together with the relatively "weak" relationship of GSR-reactivity to word content indicate the relative tenuousness of the findings from these pilot studies as a whole.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Measurement of emotionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceptual defense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submariner selection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>