LETTERS TO THE EDITOR

THE LADY
IN THE PRESIDENT’S SMOKING ROOM

201 Wickham Terrace
Brisbane
Queensland 4000
6/10/98

Dear Editor

It is every diver’s ambition to dive on the President Coolidge at Santo, the world’s largest accessible sunken liner.

The Lady (her portrait is below) is the highlight of diving on the President Coolidge and lies at a depth of 45 m (150 ft). When I first saw the art work through the gloom of the torchlight two years ago one could not be blamed for thinking one was slightly “narked”. The unusual relief consists of a standing woman in Elizabethan garb next to a unicorn (now minus its horn). The fireplace ornament was first found by Allan Power in 1981.1 Apparently it had been protected by a timber covering when the liner was converted to a troopship. In the years since the ship struck a US minefield, on October 26th 1942, the timber had rotted away.

During a second dive to The Lady it was examined in more detail and Bettina and I questioned the significance of a combination of an Elizabethan woman standing next to a unicorn. To our knowledge none of the written material about the wreck discuss this enigma.

According to myth a unicorn is seen only by virgins or women of gentle nature. The President Coolidge was launched in Virginia, which was named by Sir Francis Drake in honour of the Virgin Queen, Elizabeth 1.

We propose that the female figure in fact represents Queen Elizabeth 1. This would explain her gown, the full ruff as worn by an unmarried woman and also her reddish hair, albeit slightly faded.

What we believe seals the argument, is the presence of what almost certainly represents two Tudor roses, one above The Lady’s left arm and another below the unicorn’s left front hoof. The Tudor rose was, of course, the family emblem of Elizabeth 1.

In any event The Lady warrants at least one visit should one have the opportunity of diving to the first class passengers’ smoking room on the President Coolidge. For the careful and experienced diver it is a safe and rewarding dive.

William Douglas

Acknowledgments

Photograph courtesy of Steve Hills, Prodive, Milton, Brisbane, Queensland.

Reference

Key Words

Environment, general interest, history.

DAN SEAP INSURANCE COVER AND VANUATU

201 Wickham Terrace
Brisbane
Queensland 4000
15/10/98

Dear Editor

The recent decision by DAN S.E.Asia-Pacific to discontinue evacuation cover for Vanuatu does not surprise me. I have treated three divers with decompression sickness and one with near drowning at the Santo Hospital. The conditions in Santo Hospital are atrocious and I cannot imagine anybody who has the experience to run a decompression chamber safely, staying in that town to run a chamber.

DAN S.EAP INSURANCE COVER AND VANUATU
The quality of medical care in Vila is a good deal better and so, if a chamber is established, Vila would be the most suitable site. Obviously this involves transfer of divers from Santo to Vila. However, this is a much easier process than bringing a plane in from Melbourne, or anywhere else and transporting them back to Australia.

I found dealing with the Insurance Companies (not DAN) to be a most frustrating affair and it took approximately 17 hours for the retrieval team to collect the injured divers.1

It may be appropriate for you to approach DAN SEAP to comment on this matter as hundreds of divers will continue to visit the President Coolidge every year and further diving related injuries are certain to occur.

William Douglas

Reference

1 Douglas W. Travel insurance for divers. SPUMS J 1997; 27 (1) March: 33-34

Key Words

Accident, decompression illness, insurance, letter, rescue, transport.

Readers are referred to the WORLD AS IT IS for further comments about Vanuatu.

BOOK REVIEWS

BOVE AND DAVIS’ DIVING MEDICINE 3RD EDITION.
Editor A A Bove.
Philadelphia: W B Saunders Company
Review copy provided by Best Publishing Company, P.O.Box 30100, Flagstaff, Arizona 86003-0100, U.S.A.
Price from Best Publishing Company $US 77.00. Postage and packing extra. Credit card orders may be placed by phone on +1-520-527-1055 or faxed to +1-520-526-0370. E-mail divebooks@bestpub.com.

There are three well known books in English on Diving Medicine that all those seriously interested in Diving Medicine should have on their bookshelves. This is one of them and the other two are The Physiology and Medicine of Diving, edited by Bennett and Elliott, from England and Diving and Subaqueatic Medicine by Edmonds, Lowry and Pennefather from Australia. The latter, now in its 3rd edition (1992), is a very clinically orientated volume of 565 pages (reviewed SPUMS J 1992; 22 (2): 90). Bennett and Elliott, now in its 4th edition (1993), is a well-edited, multi-author production of 613 pages which appears to be largely aimed at those who care for, and supervise, naval and occupational divers (reviewed SPUMS J 1993; 23 (3):157-158).

Bove and Davis is another multi-author volume, this time of 418 pages, which tries to provide for both audiences. On the whole this approach has succeeded. There are some places where the editor has not been sufficiently busy with the red ink and allowed considerable repetition, but then it is well known that only about half of what one is told is usually taken in. Repeating things should increase the chances of the information being absorbed.

The list of 26 authors contains the names of 8 who have been guest speakers at a SPUMS Annual Scientific Meeting, one three times and three twice. Bennett and Elliott, with 22 authors have 6 guest speakers. Nine of the authors have contributed to both books. This makes it clear that this is a mainstream book with the chapters written by experts. The vast majority of the book is widely accepted and clearly presented. One of the pleasures of reading the book for this review was the constant use of the term “alternative air supply” rather than the PADI usage of “alternate air supply”, which suggests swapping between the primary regulator and the octopus, breath by breath, throughout the dive.

What is surprising is that a scientific book on diving medicine published in 1997 should contain a chapter on Diving Physics where the calculations are in “imperial” measurements, feet of sea water and cubic feet. Certainly they are repeated in SI measurements but all the rest of world has long ago converted to metric for scientific work. Perhaps that is a bit unfair, if the book is solely designed for the US market, where Clive Cussler’s dream of a metric America, for Dirk Pitt to carry on with his adventures, seems destined for non-fulfilment. But the book should be read around the world for the different slants it put on various aspects of diving medicine. On the other hand Bill Hamilton’s chapter on Mixed Gases is entirely metric, and as a result the calculations were much easier to follow.

The chapter on the Mechanisms and Risks of Decompression is surprisingly blinkered. Only the Haldanian theories are discussed in any depth and no mention is made in the text, or references, to the work of Brian Hills and the thermodynamic theory of decompression. Applying this theory has shown that deep stops can increase diver safety and speed decompression. Hills’ book Decompression Sickness Volume 1 (there never was Volume 2) was published in 1977! Another omission is any mention of the fact that washout of gas after a dive is...
not the mirror image of uptake, although most Haldanian decompression calculations assume that it is. Luckily the following chapter Pathophysiology of Decompression Sickness gives a wider view of the processes and problems of decompressing from a raised environmental pressure.

The excellent chapter on Hypothermia, covering the full spectrum from mild to serious, is apparently aimed at hospital doctors as, beyond simple insulation, there is no treatment (rewarming) recommended until the “the core organs” have been warmed by peritoneal lavage. There is a good review of the problems to be expected when warming a person in a bath and the modern view that the arms can be immersed without increasing risk is given mention. With mild hypothermia being very common among divers in cold water, while moderate hypothermia is uncommon and severe rare, after sensible exposures or when using dry suits, one would expect some advice aimed at the rapid treatment of rapid-onset, mild and moderate hypothermia.

The chapter on Pulmonary Disorders has a good discussion on asthma and diving but, although methacholine and histamine challenges are mentioned hypertonic saline challenge is not. The SPUMS 1995 ASM concluded that hypertonic saline has a place in the assessment of asthmatics for diving.

The chapter on the Medical Evaluation for Sport Diving is excellent and largely as the late Jefferson Davis, who in 1979 was the second SPUMS guest speaker, left it in 1989 with some changes to reflect present day views provided by Fred Bove. It is followed by David Elliott dealing with the same topic for commercial diving with a brilliant precis of Edinburgh conference in 1994 on Medical Assessment of Fitness to Dive (reviewed SPUMS J 1995; 25 (2): 72-73).

The final chapter is a discussion of US Navy (USN) Diving Techniques and Equipment. It presents a fascinating collection of information, only slightly obscured by using scuba to describe all self-contained underwater breathing apparatus. This might have been acceptable in the 50s and 60s but in the 1990s scuba has come to mean open circuit air apparatus. Luckily the author more often uses UBA (underwater breathing apparatus) when discussing rebreathers. The USN adopts a less safety conscious attitude to oxygen sets than the Australian or British navies, who use full face masks with all rebreathers. The USN only uses full face masks for their Mark 16 UBA, the $US 34,000 mixed gas rebreather with multiple electronic sensors to control oxygen levels.

John Knight

Key Words

Book review, decompression illness, diving medicine, equipment, physiology, treatment.
ROYAL ADELAIDE HOSPITAL
HYPERBARIC MEDICINE UNIT

Basic Course in Diving Medicine
Content: Concentrates on the assessment of fitness of candidates for diving. HSE-approved course.
Dates: Monday 8/2/99 to Friday 12/2/99
 Monday 1/11/99 to Friday 5/11/99
Cost: $Aust 750.00

Advanced Course in Diving and Hyperbaric Medicine
Content: Discusses the diving-related, and other emergency indications for hyperbaric therapy.
Dates: Monday 15/2/99 to Friday 19/2/99
 Monday 8/11/99 to Friday 12/11/99
Cost: $Aust 750.00
 $Aust 1,300.00 for both courses taken back to back

For further information or to enrol contact
The Director, HMU,
Royal Adelaide Hospital, North Terrace
South Australia, 5000.
Telephone Australia (08) 8222 5116
 Overseas +61 8 8222 5116
Fax Australia (08) 8232 4207
 Overseas +61 8 8232 4207

DIVING MEDICAL CENTRE
SCUBA DIVING MEDICAL EXAMINER'S COURSES
A courses for doctors on diving medicine, sufficient to meet the Queensland Government requirements for recreational scuba diver assessment (AS4005.1), will be held by the Diving Medical Centre at:
Bond University,
Gold Coast, Queensland.
2nd-4th April 1999 (Easter Holidays)

Previous courses have been endorsed by the RACGP (QA&CE) for 3 Cat A CME Points per hour (total 69)

Phone Brisbane (07)-3376-1056 for further details

Information and application forms for courses can be obtained from
Dr Bob Thomas
Diving Medical Centre
132 Yallambee Road
Jindalee, Queensland 4047
Telephone (07) 3376 1056
Fax (07) 3376 4171

SPUMS ANNUAL SCIENTIFIC MEETING 1998

DECOMPRESSION THEORY IN THIRTY MINUTES
David Elliott

Key Words
Decompression illness, history, occupational diving, physiology, tables.

Introduction
The recognition of pressure-related illnesses in divers and compressed air workers and the first ideas on the control of those hazards evolved almost blindly and with little scientific direction during the 19th century. A long time passed after the publication of Paul Bert’s work in 1878 before there was any real recognition of its message by the worldwide scientific community.1 The pioneering applied science of John Scott Haldane began some 25 years later.2 Haldane focussed upon the applied physiology of diving while, at the same time, Sir Leonard Hill was making the first quantitative analyses of nitrogen in blood and urine at pressure.3 Hill favoured the ΔP concept, a constant pressure difference for the linear decompression of caisson workers. Each physiologist made contributions to both diving and compressed air work but, in spite of arising from a common stem, the subsequent development of safe decompression procedures for the shallow but prolonged dry exposures of compressed air workers has followed a different path from that for divers. The lessons to be learned by divers from caisson work today are few and, if anything, the transfer is now in the other direction. It is therefore the purpose of this brief review to focus on aspects of the development of decompression theory and confine that to only diving. And somehow all this has to be done in a time slot that would make a single evening for the condensed performance of all Shakespeare’s plays seem generous.

To maximise the benefit, if any, from such a speedy approach it might be helpful to sketch out the route now be followed and identify some of the features to be spotlighted. Those who then wish to read more deeply in this subject with either a detailed research review,4-7 or simply an advanced instructional text,8 can use this brief overview as a guide to some practical difficulties that often seem overshadowed by computational wizardry.