Diver Exposure Scenario for the Portland Harbor Risk Assessment

Sean Sheldrake1*, Dana Davoli1, Michael Poulsen2, P. Bruce Duncan1 and Rob Pedersen1

1 USEPA, 1200 6th Avenue, Suite 900, Mailstop ECL-110, Seattle, WA 98101, USA
http://yosemite.epa.gov/R10/OEA.NSF/webpage/Dive+Team
http://yosemite.epa.gov/r10/cleanup.nsf/sites/ptldharbor
sheldrake.sean@epa.gov
2 Oregon Department of Environmental Quality, 2020 SW Fourth Avenue, Suite 400, Portland, OR 97201-4987, USA
* corresponding author

Abstract

Recreational, public safety and commercial diving occur in contaminated harbors. Much of this diving continues to be undertaken without adequate protective gear thereby exposing the diver to a variety of chemicals and possible health risks. The Portland Harbor Superfund site is a stretch of the Willamette River located north of Portland, Oregon. Diving practices have been observed at the Superfund site that may lead to or exacerbate exposure from contaminants in water and sediment for recreational, public safety, and commercial divers and dive tenders. These practices include the use of wetsuits, use of recreational regulators, use of hardhats not mated directly to the drysuit, lack of proper decontamination, and use of materials not suitable to decontamination. The Human Health Risk Assessment that is being done for the Portland Harbor Superfund site will include a quantification of the possible risks for divers who use wetsuits or drysuits where the hardhat is not mated directly to the drysuit. For the wetsuit exposure, dermal exposure to contaminants in surface water and sediment is assumed to occur over the entire body. For the drysuit with neck dam, dermal exposure is assumed to occur to the head, neck and hands. For both wetsuit and drysuit use, inadvertent ingestion of contaminated sediments and surface water is also being evaluated. The results of the diver risk assessment will be used to educate the dive community of possible negative health outcomes when appropriate, required equipment and decontamination are lacking. The intent of this paper is to give an overview of polluted water diving procedures and equipment that are available to protect the diver and discuss the lack of adherence to these by some divers in Portland Harbor. The risk assessment methods and exposure assumptions that will be used to quantitatively evaluate the potential risks from diving when appropriate personal protective equipment and decontamination are lacking will also be discussed. Future efforts will be targeted at using this quantitative exposure and risk evaluation to reduce polluted water and sediment diver exposures in Portland Harbor.

Keywords: polluted water diving, risk assessment of diver exposure, Portland Harbor cleanup

Introduction

The potential health risks for persons who dive in the Portland Harbor Superfund site will be evaluated as a part of the Portland Harbor Remedial Investigation (RI). This paper summarizes the agreement reached for the diver evaluation by EPA and its partners, including the Oregon Department of Environmental Quality, and the potentially responsible parties for the contamination found within the site. In the Portland Harbor Superfund site, an approximately 11 mile stretch located at the lower end of the Willamette River and north of Portland, Oregon, diving is done by several groups of people including: the public for recreation and gathering of biota for consumption; the sheriff's office for investigations and emergency activities; and, commercial divers for a variety of purposes, including
marine construction, underwater inspections, routine operation and maintenance, and activities related
to environmental work. In addition, both government and contracted scientific diving work is taking
place for various types of sample collection. The majority of divers are expected to be commercial
divers or government or contract divers diving under the Occupational Safety and Health
Administration (OSHA) scientific diving exemption (OSHA CFR 1910 Subpart T). As Portland
Harbor is an active harbor, commercial and scientific diving is anticipated to continue into the future,
and in an intensive fashion to support the investigation and cleanup of the site over the next several
decades.

Methods

Divers are expected to be exposed to contaminants in both sediment and water in the Portland Harbor
Superfund site. Contaminants include metals, pesticides, polycyclic aromatic hydrocarbons (PAHs),
volatile and semi-volatile organics (VOCs/SVOCs), polychlorinated biphenyls (PCBs), and
polychlorinated dibenzodioxins, and dibenzofurans. In addition, frequent sewer overflows contribute
high bacteria counts during rain events (USEPA 1998). Though there are methods to limit diver
exposure to these contaminants which have been widely published and available since 1985, these
methods are not always employed. These methods include: keeping the diver completely dry through
use of a drysuit, utilization of drygloves, ensuring materials including the drysuit are constructed of
an easily decontaminated material such as vulcanized rubber (EPA, 1985), use of a full face mask that
seats on a dryhood or preferably a hardhat that mates directly to the drysuit (USEPA 1985; Barsky
1999), appropriate training, and thorough decontamination such as a potable water post-dive rinse
(USEPA 2001). For example, inappropriate drysuit material (neoprene) and wet gloves are being used
at a site in Portland Harbor (Figure 1). A neoprene drysuit cannot be decontaminated and can spread
contaminants onto the boat and potentially to the next dive operation. The reason for prevalent use of
wetsuits in Portland Harbor is twofold: higher cost of drysuits versus wetsuits and river temperature.
The Willamette River is Clean Water Act 303d listed (Clean Water Act § 303(d) List of Impaired
Waters: http://yosemite.epa.gov/R10/WATER.NSF/TMDLs/CWA+303d+List/) as a temperature
impacted area with the Lower Willamette reaching average temperatures of over 70°F in the summer
months. EPA's experience is that most contractors on the Willamette River are still using or initially
propose use of wetsuits. As an example, both EPA's contractor for oversight of a manufactured gas
plant (MGP) site and a diver working at the MGP site noted that other divers at the site "definitely
were not suited up or following the rigid health and safety requirements" and were wearing gear that
"one would use for recreational diving in the tropics" (Davoli 2008, personal communication). Wet
gloves are used (Figure 2), which the divers may have deemed necessary due to impingement hazards
that may compromise dry gloves. Wet gloves used in polluted water cannot be decontaminated and
should be disposed of after dive operations and/or specially managed to not expose tenders and divers
on this or the next dive operation. Wet gloves also potentially introduce dermal exposure to the diver
during the dive. A better course might be to put nitrile or rubber gardening-type gloves over the
drygloves to offer some chaffing protection, and then dispose of all the gloves after the dives.
Another example of commercial dive exposure in the river is a solo diver for hire who makes himself
available to find lost items, such as car keys, in marinas throughout Portland Harbor, utilizing a
wetsuit and recreational regulator to "dig around in the muck" using scuba or freediving to find lost
items (Oregon Public Broadcasting 2008).
Figure 1. A diver exiting the water at a Portland Harbor Superfund cleanup site.

Figure 2. A diver exiting the water at a Portland Harbor Superfund Cleanup site.
As a part of the human health risk assessment required for the Portland Harbor Superfund site, the potential risk to divers from sediment and water will be assessed. US EPA's Superfund guidance recommends that exposure be evaluated for the "reasonable maximum exposure" (RME) as well as for an average exposure (i.e., central tendency [CTE]) (USEPA, 1989; 1992). For the diver scenario for the Portland Harbor risk assessment, exposure is assumed to occur in four ways: dermal exposure (absorption through the skin) from water, dermal exposure from sediment, inadvertent ingestion of water and inadvertent ingestion of sediment.

Two scenarios have been selected for the RME based upon diving practices in Portland Harbor. For the first RME scenario, referred to as the wetsuit RME, a diver is assumed to be a commercial diver wearing a wetsuit without a full face mask and wearing wet gloves or no gloves. Therefore, dermal exposure to water and sediment is assumed to occur over the entire body. For the second RME scenario, referred to as the drysuit neck dam scenario, a diver is assumed to be a commercial diver who wears a drysuit and hardhat attached through a neck dam rather than having a helmet mated to the drysuit. This diver is also expected to be wearing wet gloves. For this diver, dermal exposure to water and sediment is assumed to occur to the head, neck and hands. For both RME scenarios, inadvertent ingestion of water and inadvertent ingestion of sediment are assumed to be the same since both diver scenarios assume face exposure, wet gloves, and inadvertent exposure in the water and on the boat. Inadvertent exposure to sediment on the boat can occur as a result of the absence of or lack of attention to thorough decontamination (e.g., donning and removing diving suits that have not been decontaminated and/or handling gear which cannot be decontaminated such as a neoprene drysuit or wetsuit and eating food with contaminated hands).

An average exposure scenario will also be included assuming use of a wetsuit without a full face mask and wearing wet gloves or no gloves. For the CTE scenario, the exposure routes are the same as that for the corresponding wetsuit RME scenario but the exposure values have been reduced for some exposure parameters.

To evaluate the potential exposure and health risks for a diver, information is needed on the level of contaminants in the media (i.e., sediment and water) that that diver is being exposed to as well as information on the diver's behavior (e.g., type of equipment worn, frequency and duration of diving, years spent diving, and amount of inadvertent sediment and water ingestion) and the diver's characteristics (e.g., body weight, surface area of the body).

For the Portland Harbor risk evaluation for divers, data collected as a part of the Superfund site Remedial Investigation (RI; http://yosemite.epa.gov/R10/CLEANUP.NSF/ph/Technical+Documents) and other studies are available to provide information on sediment and water contaminant levels that a diver might be exposed to. In the risk evaluation method described below, the information on diver behavior and characteristics is from a variety of sources.

Most of the equations, exposure assumptions, and/or calculation of exposure values are consistent with EPA's Risk Assessment Guidance for Superfund, Part A (USEPA 1989) and/or Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual Supplemental Guidance "Standard Default Exposure Factors," Interim Final (OSWER Directive 9285.6-03, March 25, 1991; OSWER 1991). However, others as noted below are based upon other EPA guidance, were calculated using Portland Harbor site-specific information, or were based on Best Profession Judgment (BPJ).
SEDIMENT EXPOSURE
Sediment Ingestion

For sediment ingestion by divers, the general equation for soil ingestion from EPA's Risk Assessment Guidance for Superfund (USEPA 1989) is used but chemical concentration in soil is replaced with the chemical concentration in sediment.

\[
\text{Daily Intake (mg kg}^{-1} \text{day}^{-1}) = \frac{\text{EPC} \cdot \text{SIR} \cdot \text{EF} \cdot \text{ED} \cdot \text{CF}}{\text{BW} \cdot \text{AT}}
\]

where:

- Daily Intake- milligrams of a contaminant in sediment (dry weight) ingested per kilogram body weight per day (mg kg\(^{-1}\) day\(^{-1}\))
- RME - Reasonable maximum exposure
- CTE - Central tendency exposure
- EPC - Exposure Point Concentration, chemical concentration in sediment (mg kg\(^{-1}\) dry weight)
- SIR - Sediment Ingestion Rate (mg day\(^{-1}\)); [both RMEs (use of a wetsuit or a drysuit with neck dam) 50 mg day\(^{-1}\); CTE = 25 mg day\(^{-1}\)]
- EF - Exposure Frequency (days \cdot year\(^{-1}\)) [both RMEs = 5 days year\(^{-1}\); CTE = 2 days year\(^{-1}\)]
- ED - Exposure Duration (years) [both RMEs = 25 years; CTE = 9 years]
- CF - Conversion Factor (kg mg\(^{-1}\)) [10\(^{-6}\)]
- BW - Body Weight (kg) [both RMEs / CTE = 70]
- AT - Averaging Time (days) – [Cancer RMEs / CTE = 25,550 days; Non-cancer RMEs = 9,125 days and Non-cancer CTE = 3,285 days].

Exposure Point Concentration (EPC or Chemical Concentration in Sediment) - It is expected that divers could dive in any part of the Portland Harbor site and, therefore, be exposed to near-shore contaminated sediment from areas throughout the site. For divers, the Willamette River will be divided into half-mile near-shore segments on each side of the river. The sediment samples in each near-shore segment on each side of the river will be used to estimate exposure point concentrations (EPCs). The arithmetic mean will be used as the EPC for the central tendency exposure (CTE) and the 95% upper confidence limit (UCL) on the arithmetic mean will be used for the EPC for the reasonable maximum exposures (RME) scenario (OSWER, 1989).

Sediment Ingestion Rate (SIR) - The sediment ingestion rates chosen for divers are 50 mg/day for both RMEs and 25 mg\(\text{day}^{-1}\) for the CTE. The 50 mg\(\text{day}^{-1}\) is the value for soil ingestion recommended for commercial/industrial workers (OSWER, 1991). The 25 mg\(\text{day}^{-1}\) is one-half of the value recommended for workers and is based upon best professional judgment. The authors, being familiar with diving and overseeing commercial divers within the Portland Harbor site, have suggested that the sediment ingestion rate could be higher for divers for several reasons, including the fact that divers potentially have more direct contact with sediments in the water and that residual contaminant loading on the hands of divers (including those who use wet or dry gloves) may be higher and result in higher exposures when foods are consumed on the boat (D. Davoli, personal communication, 2008). Tasks that are typically undertaken which can accrue substantial diver/sediment interaction could include: hand-core sediment sampling, cap inspection including probing for native material, and anchor installation for silt-curtain dredging controls.
Exposure Duration - The recommended exposure durations for divers are 25 years for the RME (OSWER, 1991) which is EPA's recommended RME default exposure duration assumption for workers and nine years for the CTE (USEPA, 2004). The RME value (on the order of several decades) is a typical duration for a large Superfund site cleanup, and is therefore a reasonable timeframe for longer term Portland Harbor diver exposures.

Averaging time (AT) - The AT corresponding to these exposure durations are 25,550 days for estimating cancer risks for both the RME and CTE; and 9,125 days and 3,285 days for the RME and CTE, respectively, for estimating non-cancer effects (OSWER 1989).

Conversion factor (CF, mg kg\(^{-1}\)), and body weight (BW, 70 kg) - The CF is from OSWER (1989) and BW is from OSWER (1991) for workers.

Exposure Frequency (EF) - EF values were derived specifically for divers at Portland Harbor based upon discussions with commercial and EPA divers who work in the Portland Harbor Superfund site. Dive logs were obtained by EPA for a commercial diver who worked for several of the potentially responsible parties at the site in 2005 and 2006. At one site, he dived 74 times on 15 separate days. The number of dives per day ranged from three to eight. The average dive time was 24 minutes with a range from five minutes per dive up to 62 minutes per dive. For the other Portland Harbor sites, the diver dove 80 times on 20 separate days. The number of dives per day ranged from two to six. The average dive time was 25 minutes with a range of six minutes per dive up to 85 minutes per dive.

Discussions that the potentially responsible parties' contractor (D. Davoli, personal communication, 2008) had with dive companies also found that some commercial divers who perform work not related to sampling and analysis and cleanup activities (e.g., diving to repair outfalls, work on ship hulls, underwater inspections) do less dives per day but spend more time (up to four hours) underwater for each dive using surface supplied air. These dive companies also stated that they dive less frequently in Portland Harbor than do those divers who are diving for Superfund cleanup purposes. In addition, Multnomah County Sheriff's Department divers also dive in the Willamette River on a regular basis, including six locations within the Superfund initial study area between 1998 and 2000 (D. Davoli, personal communication, 2009).

Based upon this information and using best professional judgment, the recommended exposure frequency that was selected for both RME divers is five days per year and two days per year for the CTE. This exposure frequency assumes that all other diving done by a diver (i.e., diving done the other 360 days/year for the RME and 363 days per year for the CTE) is done outside of Portland Harbor. For the five days (RME) and two days (CTE) per year that a diver is assumed to be exposed at the Portland Harbor site, this exposure occurs at only the one near-shore half-mile segment of the site for which an EPC is being calculated. Cumulative risk for divers who may dive at more than one site in Portland Harbor is not included in these calculations. It is assumed that these assumptions will be protective for commercial divers that are performing routine activities but may underestimate the number of dives done in one or multiple segments for workers conducting hazardous waste operations, including sampling/analysis and cleanup work.

Sediment Dermal

For dermal exposure (absorption of contaminants in sediment through the skin) by divers, the general equation for dermal contact with chemicals in soil from EPA's Risk Assessment Guidance for Superfund (USEPA, 1989) is used but chemical concentration in soil is replaced with the chemical concentration in sediment:
For divers, the recommended EPC, EF, ED, CF, BW, and AT are the same as those described above for sediment ingestion:

- **EPC** - Exposure Point Concentration (mg kg⁻¹) [concentration of a contaminant in each half-mile segment]
- **EF** - Exposure Frequency (Events or days/year⁻¹) [both RMEs=5 days/year⁻¹; CTE=2 days/year⁻¹]
- **ED** - Exposure Duration (years) [RME=25 years; CTE=9 years]
- **BW** - Body Weight (kg) [70 kg]
- **AT** - Averaging Time (days) – [Cancer RMEs/CTE=25,550 days; Non-cancer RMEs=9,125 days and Non-cancer CTE=3,285 days]
- **CF** - Conversion Factor (kg mg⁻¹) [10⁻⁶].

For ABS, AF and SA, the following values will be used:

- Adherence Factors (AF) - Adherence factors (AF, mg cm⁻² event⁻¹) are taken from USEPA (2004). For the diver, 0.3 mg cm⁻² per event will be used for both of the RMEs and 0.07 mg cm⁻² per event will be used for the CTE. These values represent the activity specific surface area weighted soil adherence factors for residential adult gardeners (0.3 mg cm⁻² is the 95th percentile and 0.07 mg cm⁻² is the geometric mean) and are the same values being used for in-water fishers in the Portland Harbor risk assessment.
- Surface Area (SA) - For surface area (SA, cm²) for the wetsuit RME diver and the wetsuit CTE divers who are assumed to be wearing a wetsuit and to have whole body exposure, the surface area exposed is assumed to be 18,150 cm² (average of the mean whole body value for males and females from USEPA Exposure Factors Handbook, EPA, 1997). For the drysuit with neck dam RME exposure, only hands, head and neck are assumed to be exposed. This is equivalent to a surface area of approximately 2,510 cm². This is based upon 1,206 cm² for the head and 904 cm² for hands based on the average of the mean for males and females. A value of 400 cm² was used for the neck based upon 6% of the trunk value (including neck) of 6,600 cm² (the average of the 50% value for these body parts for males and females from EPA’s Exposure Factors Handbook).

WATER EXPOSURE

Water Ingestion

For inadvertent surface water ingestion by divers, a modification of the general equation for inadvertent surface water ingestion of chemicals in surface water while swimming is used (OSWER, 1989):

\[
\text{Daily Intake (mg kg}^{-1}\text{day}^{-1}) = \frac{\text{EPC} \cdot \text{WIR} \cdot \text{t}_{ev} \cdot \text{EF} \cdot \text{ED} \cdot \text{CF}}{\text{BW} \cdot \text{AT}}
\]
For EF, ED, BW, and AT, the values for divers are the same as those recommended for diver exposure to sediments:

- **EF** - Exposure Frequency (Events or dives-year\(^{-1}\)) [both RMEs=5 days\(\cdot\)y\(^{-1}\); CTE=2 days\(\cdot\)y\(^{-1}\)]
- **ED** - Exposure Duration (years) [RME=25 years; CTE=9 years]
- **BW** - Body Weight (kg) [70 kg]
- **AT** - Averaging Time (days) – [Cancer RMEs/CTE=25,550 days; Non-cancer RMEs=9,125 days and Non-cancer CTE=3,285 days]
- **CF** – Conversion Factor is 10\(^{-3}\) L\(\cdot\)mL\(^{-1}\).

For the EPC, \(t_{ev}\), and WIR, the following values are recommended:

- **Exposure Point Concentration** (mg\(\cdot\)L\(^{-1}\)) – It is assumed that commercial divers can be exposed to surface water throughout in the Portland Harbor site. Therefore, for divers, all of the surface water data collected for the RI in the PH site will be used in calculating the surface water EPC for divers including single point data as well as near bottom and near surface data collected at specific industrial sites, cross river transect data, and vertically integrated data collected in quiescent areas.

For the transect samples, multiple sample events were collected both spatially and temporally. Therefore a method was developed to generate a relatively consistent set of transect data integrating results over the width and depth of the Willamette River in the site. These data will be used to calculate the arithmetic mean EPA for the central tendency exposure (CTE) and the 95% upper confidence limit (UCL) on the arithmetic mean (when possible) for the EPC for the RME scenario. The single point water data and integrated samples collected in quiescent areas are to be used as individual EPCs; while the near bottom and near surface samples will be averaged and used as the EPC for divers.

- **WIR** - Water Ingestion Rate (mL\(\cdot\)h\(^{-1}\)) - For the water ingestion rate, the value of 50 mL\(\cdot\)h\(^{-1}\) is used for both the CTE and RME. This is the values recommended in USEPA (1989) as water ingestion rate for swimmers and was deemed appropriate for divers based upon discussions with EPA divers.

- **\(t_{ev}\)** – Event Duration (h\(\cdot\)event\(^{-1}\) or dives) - For developing values for event duration, the dive logs discussed previously from a commercial diver who works for the responsible parties were used as well as information collected by the potentially responsible parties' contractor who interviewed diving companies. From the early-action cleanup dive logs from the MGP site, the average dive time was 24 minutes with a range of five minutes per dive up to 62 minutes per dive. For the dive logs from the other Portland Harbor sites, the average dive time was 25 minutes with a range from six minutes per dive up to 85 minutes per dive. This information on minutes per dive was used with previously discussed information on the number of dives per day (see discussion under Exposure Frequency in Sediment Ingestion section) to estimate the hours per dive. The range of time spent in the water in a day is, therefore, from 50 minutes (two dives at 25 minutes per dive) to 3.2 hours (eight dives at 24 minutes per dive). The potentially responsible parties' contractors found that a diver can spend four hours in the water in one day using supplied air. Based upon these data, the recommended values for the event duration (for each day) are two hours per dive for the CTE (approximate mid-range of 50 minutes and 3.2 hours) and four hours per dive for both of the RMEs (information from the potentially responsible parties' surveys).
Water Dermal

For dermal exposure (absorption of contaminants in water through the skin) by divers, a modification of the general equation for dermal contact with chemicals in water from USEPA (2004) was used:

\[
\text{Daily Intake (mg kg}^{-1}\cdot\text{day}^{-1}) = \frac{\text{DA} \cdot \text{SA} \cdot \text{EF} \cdot \text{ED} \cdot \text{BW} \cdot \text{AT}}{\text{BW} \cdot \text{AT}}
\]

For all of the exposure parameters, except DA (the absorbed dose per event in mg cm\(^{-2}\) per event \(i.e.,\) per day), the values EF, ED, BW, AT and SA for divers are the same as those recommended for dermal exposure to sediment:

- **EF**: Exposure Frequency (Events or dives/year) \([\text{both RMEs}=5 \text{ days}^{-1}; \text{CTE}=2 \text{ days}^{-1}]\)
- **ED**: Exposure Duration (years) \([\text{RME}=25 \text{ years}; \text{CTE}=9 \text{ years}]\)
- **BW**: Body Weight (kg) \([70 \text{ kg}]\)
- **AT**: Averaging Time (days) – \([\text{Cancer RMEs/CTE}=25,550 \text{ days}; \text{Non-cancer RMEs}=9,125 \text{ days} \text{ and Non-cancer CTE}=3,285 \text{ days}]\).
- **SA**: Surface Area (cm\(^2\)) - Area of 18,150 cm\(^2\) for the wetsuit RME diver and the wetsuit CTE divers and 2,510 cm\(^2\) for the drysuit with neck dam RME exposure.

Absorbed Dose (DA) - Several values are needed to calculate DA (the absorbed dose per event in mg cm\(^{-2}\) per event \(i.e.,\) per day)). These values are the EPC for surface water, \(t_\text{ev}\) (the event duration) and \(K_p\) (the dermal permeability coefficient of the contaminant in water in cm/hr). The EPC and \(t_\text{ev}\) are the same as those used above for water ingestion. \(K_p\) values are chemical specific and are found in USEPA (2004). There are many uncertainties inherent in the \(K_p\) values for certain chemicals \(e.g.,\) DDT and PCBs) and these uncertainties will be addressed in the Portland Harbor Human Health Risk Assessment.

As discussed previously, the diver risk assessment being done for the Portland Harbor Superfund site focuses on commercial divers who are performing routine activities within the site. Potential risk to workers conducting hazardous waste operations, including sampling/analysis and cleanup work, should be included in an evaluation of implementation risks in feasibility study. Whether diving under the OSHA commercial diving standards, or OSHA scientific diving exemption, cleanup workers should be working under conditions that are in compliance with OSHA standards (29 CFR 1910.120), as the OSHA scientific diving exemption does not exempt scientific divers from employing personal protective equipment (PPE) and other preventative exposure measures. However, as previously discussed, EPA's experience is that divers in Portland Harbor involved in sampling/analysis do not always dive in compliance with the OSHA standards and/or do not initially propose dive plans in compliance with hazardous waste site operation (HAZWOPER) standards. Typically, items such as basic diver environmental isolation (PPE) and medical monitoring (1910.120 HAZWOPER items) are not proposed in the Health and Safety Plan, and are often only added at the request of EPA. It is a reasonable presumption that contractors doing similar work not under EPA oversight may not be equipping their divers, training their divers, or monitoring their divers for hazardous waste exposure per OSHA 29 CFR 1910.120. As a result, divers conducting hazardous waste operations and not following OSHA standards are likely exposed to risks similar to or greater than those being estimated for non-hazardous waste commercial divers in the Portland Harbor Human Health Risk Assessment (PH HHRA). This is because these divers may spend more time diving in PH and dive in multiple segments of the site that have some of the higher contaminant concentrations.
Discussion

EPA has evaluated and directed the potentially responsible parties to conduct diver exposure assessments for the Portland Harbor Remedial Investigation to ensure that risks of diving at the site for commercial, scientific (commercial or government), public safety, and recreational divers are known and may be used for outreach efforts. Though exposures are qualitatively understood to take place, quantitative evaluation has not been undertaken to date at other Superfund sites, to the authors’ knowledge. The equations used for these calculations are derived from existing US EPA guidance. Input parameters are from US EPA Guidance or based on site specific concentration data and EPA staff observations and commercial contractor dive logs. EPA intends to use these results to conduct further outreach with the Portland Harbor diving community to eliminate or mitigate these exposures, and provide this quantitative approach to determining exposure to the larger diving community (e.g., dive safety and rescue organizations). In addition, EPA hopes to solicit feedback on inputs used in this diver scenario for potential application at other Superfund site harbor investigations.

Elimination of exposures may involve boat based sampling techniques rather than diver based techniques, for example. Mitigation measures could involve use of added training, medical monitoring, revisions of commercial and scientific diving safety manuals and dive plans to more clearly acknowledge OSHA 29 CFR 1910.120 requirements in contaminated or possibly contaminated dive areas, and improvements in personal protective equipment. See photo 3 below for an example of personal protective equipment / polluted water dive gear in use by EPA's Region 10 unit. Note that a full face mask is used that sits directly on the dry hood, drygloves, and a suit compatible with decontamination. Outreach for these additional steps could also involve education of the dive community of OSHA requirements that pertain to both scientific and working dives within "hazardous waste sites" for the aforementioned steps (OSHA 29 CFR 1910.120).
Disclaimer: This paper is an illustration of steps to be taken to quantitatively evaluate and minimize exposure to the diver in hazardous environments and does not represent the official view of the USEPA or Oregon DEQ. Mention of any specific brand or model instrument or material does not constitute endorsement by the USEPA or Oregon DEQ.

References

Oregon Public Broadcasting Think Out Loud, "Are you going to swim in that?" August 22, 2008.

USDOL, Occupational Safety and Health Administration, 29 Code of Federal Regulations 1910.120, "Hazardous waste operations and emergency response."

USDOL, Occupational Safety and Health Administration, 29 Code of Federal Regulations 1910 Subpart T, "Scientific Diving Exemption."

USEPA Exposure Factors Handbook, EPA/600/P-95/002Fa, August 1997.

